Area Formulas (units ${ }^{2}$)

* Note: b $\perp \mathrm{h}$

Rectangle $\mathrm{A}=\mathrm{bh}$				
Parallelogram				
$\mathrm{A}=\mathrm{bh}$			\quad	Triangle
:---				
$\mathrm{A}=1 / 2 \mathrm{bh}$,	Trapezoid		
:---				
$\mathrm{A}=1 / 2 \mathrm{~h}\left(\mathrm{~b}_{1}+\mathrm{b}_{2}\right)$				
* Note: $\mathrm{b}_{1} \& \mathrm{~b}_{2}$ are the parallel sides				

Surface Area (units ${ }^{2}$) \& Volume (units ${ }^{3}$) Formulas

	\# faces/bases shapes	Surface Area (units ${ }^{2}$)	Volume (units ${ }^{3}$)
Rectangular Prism	6 faces All rectangles	$\begin{gathered} \mathrm{SA}=2 \mathrm{l} \mathrm{w}+2 \mathrm{lh}+2 \mathrm{wh} \\ \mathrm{SA}= \end{gathered}$ Find area of all faces and add together	$\begin{gathered} \mathrm{V}=\mathrm{Bh} \\ (\mathrm{~B}=\mathrm{lw}) \text { so } \mathrm{V}=\mathrm{lwh} \end{gathered}$
Triangular Prism \square	5 faces 2 triangles (bases) 3 rectangles	SA = Find area of all faces and add together	$\mathrm{V}=\mathrm{Bh}$ (B is Area of triangle base: $\mathrm{B}=1 / 2 \mathrm{bh}$)
Rectangular Pyramid	$\begin{gathered} 5 \text { faces } \\ 4 \text { triangles } \\ 1 \text { rectangle (base) } \end{gathered}$	$\mathrm{SA}=$ Find area of all faces and add together	$\mathrm{V}=\frac{B h}{3}$
Triangular Pyramid	$\begin{gathered} 4 \text { faces } \\ 4 \text { triangles } \end{gathered}$	$\mathrm{SA}=$ Find area of all faces and add together	$\mathrm{V}=\frac{B h}{3}$
Cylinder	\# bases \& shape only 2 circle bases	$\mathrm{SA}=2 \pi \mathrm{r}^{2}+2 \pi \mathrm{rh}$	$\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$
	\# bases \& shape only 1 circle base		$\mathrm{V}=\frac{\pi r^{2} h}{3}$
Sphere			$\mathrm{V}=\frac{4 \pi r^{3}}{3}$

