\# of Solutions:

1 soln (x, y)	Infinitely Many Solns	No Soln
All pts on line	$\}$ or \varnothing (null set)	
Lines intersect in exactly 1 pt	Lines - coincide (same line)	Lines are parallel (same slopes) / do not intersect
*Independent \& Consistent	* Dependent \& Consistent	* Inconsistent

Methods of Solving a System of Equation

1. Graphing

* Best to use when lines intersect at integer coordinates (must be neat \& accurate)
- graph both lines on coordinate plane (use $y=m x+b$)
- Solution will be:

One point -> (x, y) If intersect at a point
Infinitely many \rightarrow if lines coincide
No Soln -> If lines are parallel

2. Substitution Method

* Best to use when one of eqns has a variable with a coefficient of 1
- Solve one eqn (this will be $1^{\text {st }}$ eqn) for one of variables (isolate variable)
- Substitute this expression into the other eqn ($2{ }^{\text {nd }}$ eqn) for given variable
- Solve $2^{\text {nd }}$ eqn for remaining variable
- Substitute answer from $2^{\text {nd }}$ eqn into one of original eqns \& solve for remaining variable

Note:
If you are solving $2^{\text {nd }}$ eqn and variable drops out:

- if resulting statement is true -> Infinitely Many solns
- if resulting statement is false - NO soln

3. Elimination Method

* Use only when one of variables has the same or opposite coefficients
- Re-write eqns. so that variable terms line up vertically.
- If coefficients are opposites - add eqns.
- If coefficients are same - subtract eqns. (note: subtract every term)
- Solve for remaining var.
- Substitute value from step 3 into 1 of orig. eqns. \& solve for remaining var.

Note:
If both variables drop out:

- if resulting statement is true -> Infinitely Many solns
- if resulting statement is false - NO soln

4. Elimination with Multiplication Method

* Use when none of coefficients are 1 or -1 \& neither var. can be elim. by simply adding or subtracting the eqns.
- Multiply 1 or both of the eqns. by some number(s) so that 1 of the variable terms are the same or opposites. Be sure that you multiply EVERY term of eqn by the \#.
- Use elim. with add. or subt. to eliminate 1 of the var.

Note:
If both variables drop out:

- if resulting statement is true -> Infinitely Many solns
- if resulting statement is false - NO soln

You can also solve word problems with systems of eqns

1. Define 2 variables
2. Write 2 eqns that relate variables from given info.
3. Solve the resulting sys. of eqns.
