Linear Equations

Slope (m) – steepness of a line

4 types of slope:

* Note: Positive & negative sign give direction of the line. Numeric value tells how steep line is. Greater the numeric value, the steeper the line.

To find slope of a line:

Given 2 points on a line $(x_1, y_1) \& (x_2, y_2)$	$m = \frac{y_2 - y_1}{x_2 - x_1}$
From any 2 points on graph	 Start at the leftmost point. Find RISE by counting up (positive) or down (negative) until at the same level as other point Find RUN by counting right until you get to other point Write slope as: m = rise run
Rate of Change (real-life situations)	Rate of Change = $\frac{change \ in \ amount}{change \ in \ time}$ * Be sure to include units with answer

Linear Equations – equations whose graphs are straight lines:

Standard Form	Ax + By = C		
	A, B, C – integers (no fractions/decimals) A & B both ≠ 0 A > 0 (A can't be negative)		
Slope-intercept Form	y = mx + bm -> slope of line / b-> y-intercept (0, b)x & y are variables because they represent any point on the line		
	Use slope-intercept form to easily graph lines		
	begin with "b" (y-intercept) & plot point on y-axis move with "m" (slope) – from y-intercept use rise/run to find other points on line		
	* If need to graph eqn that is not in slope-intercept form, re-write it in slope-intercept form first.		
Point-Slope Form	$y - y_1 = m(x - x_1)$		
	m is slope (x_1, y_1) is one of the actual points on the line		
Special Linear	x = # (x + 0y = #) -> Vertical Line -> No Slope		
Eqns	y = # (0x + y = #) -> Horizontal Line -> Zero Slope		

<u>x & y –intercepts:</u>

x-intercept (#, 0)	y-intercept (0, #)
Point where graph crosses the x-axis	Point where graph crosses y-axis
* Also called the solutions or roots of eqn.	
To find x-intercept:	To find y-intercept:
1. Substitute y = 0 into eqn	 Substitute x = 0 into eqn
2. Solve for x	2. Solve for y
3. x-intercept is located on the x-axis at the	3. y-intercept is located on y-axis at the point

noint	(#	0)
point	(π,	U)

To write equations of lines in slope-intercept form:

Given 1 point & slope	1. Substitute slope in for m in y = mx + b		
	2. Substitute given point (x, y) into $y = mx + b$		
	for x and y. Solve for b.		
	3. Final eqn will be in form y = mx + b with		
	given slope, m, and the y-intercept, b, you		
	found in step 2		
Given 2 points	1. Use slope formula to find slope		
	$m = \frac{y_2 - y_1}{y_2 - y_1}$		
	$x_{2} - x_{1}$		
	2. In the eqn $y = mx + b$, substitute slope you		
	found in step 1 for m and 1 of given points		
	in for x & y. Solve for b.		
	3. Final eqn will be in form y = mx + b with		
	slope, m, you found in step 1 and the		
	y-intercept, b, you found in step 2		
Through a given point & parallel or	1. Write given eqn in slope-intercept form		
perpendicular to a given line	(y = mx + b) & identify the slope, m.		
	2. State the slope of the line that is		
	(same slope) or \perp (opposite reciprocal		
	slopes) to given line.		
	3. In $y = mx + b$, substitute the slope in from		
	step 2 in for m and the given point in for		
	x & y. Solve the eqn for b.		
	4. Final eqn will be in form $y = mx + b$ with		
	slope, m, that is $ $ or \perp given line you		
	found in step 2 and the y-intercept, b,		
	you tound in step 3.		