Exponent of Zero	$\mathrm{a}^{0}=1$ for $\mathrm{a} \neq 0$
Negative Exponents	$a^{-n}=1 / a^{n} \text { for } a \neq 0$ Never leave a negative exponent -> take reciprocal \& make exponent positive
Product of Powers	$a^{m} \cdot a^{n}=a^{m+n}$ When multiplying same bases, keep base \& add exponents
Quotient of Powers	$a^{m} / a^{n}=a^{m-n}$ for $\mathrm{a} \neq 0$ When dividing same bases, keep base \& subtract exponents
Power of Power	$\left(a^{m}\right)^{n}=a^{m n}$ When you have a power to power, keep base \& multiply exponents
Power of Product	$(a b)^{m}=a^{m} b^{m}$ When a product is to a power, apply power to both factors
Power of Quotient	$(a / b)^{m}=a^{m} / b^{m} \quad$ for $\mathrm{b} \neq 0$ When a quotient is to a power, apply power to both dividend \& divisor
Power of a sum/difference	Ex1: $(x+y)^{2}=(x+y)(x+y)$ Ex2: $(x-y)^{2}=(x-y)(x-y)$ * Must follow mult rules for polynomials to mult out
Difference of Squares	$(x-y)(x+y)=x^{2}-y^{2}$

