Algebra ~ Properties \& Definitions

Property	Meaning
Addition Property of Equality	You can add the same \# to both sides of an equation Given $a=b$, then $a+c=b+c$
Additive Identity	Add 0 get same \# $\quad a+0=0$
Additive Inverse (Prop of Opposites)	\# plus its opposite $=0 \quad a+-a=0$
Associative Prop. (+ or x)	when + or $x 3$ or more \#s can change the groupings $a+(b+c)=(a+b)+c$ $x(y z)=(x y) z$
Closure Property	add or multiply 2 real \#s you get only 1 answer $\&$ it is a real \#
Commutative Prop. (+ or x)	Switch order of \#s around + or x $a+b=b+a \quad x y=y x$
Defn of Division	Change division to mult by the reciprocal "Keep it, change it, flip it" $a \div b=a \cdot \frac{1}{b}$
Defn of subtraction	Change subt to add of opposite "Add a line, change the sign" $a-b=a+-b$
Distributive Prop	\# mult to par. gets mult to every term inside par. $a(b+c)=a b+a c \quad a(b-c)=a b-a c$
Division Property of Equality	You can divide by the same nonzero \# to every term on both sides of an equation If $a=b$, then $a \div c=b \div c$
Multiplication Property of Equality	You can multiply the same \# to every term on both sides of an equation Given $\mathrm{a}=\mathrm{b}$, then $\mathrm{ac}=\mathrm{bc}$
Multiplicative Identity	Mult by 1 \& get same \# a 1 = a
Multiplicative Inverse (Prop of Reciprocals)	Product of a \# \& its reciprocal is $1 \quad a \cdot \frac{1}{a}=1$
Multiplicative Prop of -1	Mult by -1 \& get opposite of \# a $-1=-\mathrm{a}$
Multiplicative Prop of Zero	Mult by 0 \& answer is $0 \quad \mathrm{a} \cdot 0=0$
Prop of Opposites in Product	$(-\mathrm{a})(\mathrm{b})=-(\mathrm{ab})$
Prop of Opposites of Sum	Take the opposite of every term $\quad-(a+b)=-a+-b$
Prop of Reciprocal of Opposite of a \#	$\text { Recip of }-\mathrm{a}=-\frac{1}{a}$
Prop of Reciprocal of Product	Recip of prod. of 2 \#s is the product of their reciprocals $\frac{1}{a b}=\frac{1}{a} \cdot \frac{1}{b}$

[^0]| Reflexive Property of Eq. | Exactly same on both sides of eqn. |
| :--- | :--- |
| Substitution Prop | Replace an expression with its equivalent |
| Subtraction Property of Equality | You can subtract the same \# from both sides of an
 equation
 Given $a=b$, then $a-c=b-c$ |
| Symmetric Property of Eq. | Flip sides around an $=$ sign (must have 2 eqns)
 If $a=b$, then $b=a$ |
| Transitive Property of Eq. | If 2 things are = to the same thing, they are also = to
 each other (must have 3 eqns)
 If $a=b \& b=c$, then $a=c$ |

[^0]: Page $\mathbf{1}$ of $\mathbf{2}$

